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Abstract

In this study we consider an i.i.d. random version of the minimum spanning tree (MST)

of the complete graph on n vertices and investigate distributional and structural properties

of the MST limit object, as n → ∞, established in [1]. Relatively little is known about

this graph limit. We approximate this object by simulation of trees on up to 4000 vertices.

Simulated trees are endowed with the graph distance renormalized by n1/3.

Analysing the total length of reduced trees on up to k = 4 randomly chosen vertices

using non-parametric and parametric density estimation techniques, suggests a unimodal

distribution with exponential tails. Moreover, it seems to be log-concave and its overall

shape is similar to a Gamma-distribution.

Dirichlet-models provide a very good approximation for the distribution of segmental

lengths in reduced trees on up to k = 6 randomly chosen vertices, when measured as pro-

portions of the total length. However, these proportions do not follow the same marginal

distribution and are thus not exchangeable, unlike in the limit object of the uniform ran-

dom tree - the Brownian Continuum Random Tree (BCT). The simulated data supports

the existence of two groups of segmental lengths in which elements are exchangeable.

The structural shape of reduced trees has no significant influence on the distribution of

segmental lengths or the total length. Yet, in contrast to the BCT, genuinely different

possible shapes are not equally likely to occur.
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1 Introduction

A graph consists of a set V , whose elements we call vertices, and a set E of unordered

pairs of elements of V , which we refer to as edges. Such a graph, in which every pair of

distinct vertices is connected by a unique edge, is called a complete graph. The complete

graph on n vertices, labelled by {1, 2, · · · , n}, is denoted by Kn, and contains n(n−1)/2

edges.

A tree is defined to be a connected graph with no cycles. Therefore, a tree on n vertices

has exactly n− 1 edges. We can think of trees on n vertices as being subgraphs of Kn. In

this context, we call them spanning trees. From Cayley’s formula we know that there are

nn−2 distinct trees on n vertices, and hence Kn possesses nn−2 spanning trees [5].

Consider a complete graph in which we assign each edge a non-negative weight. Finding

the minimum spanning tree (MST), that is, the spanning tree with the minimum sum of

weights, is one of the founding problems of combinatorial optimisation.

In this project, we are going to study an i.i.d. random version of the MST problem. For

this purpose we assign independent random weights from a uniform distribution between

0 and 1 to the n(n − 1)/2 edges of the complete graph. Notice that for the MST prob-

lem, only the ranking of the edge-weights matters, rather than the exact values. It would

therefore make no difference if we assigned i.i.d. weights from any other continuous

distribution.

Assigning distinct independent random weights to the n(n − 1)/2 edges of Kn and ex-

tracting the resulting minimum spanning tree, is merely a random selection procedure on

the set Sn of all trees on n vertices. Although seemingly similar, this procedure is sub-

stantially different from uniform random trees (URT), defined by sampling uniformly at

random from Sn.

After the selection of a tree, we assign equal length of 1 to all edges. Naturally, distances

on the tree between randomly chosen vertices become larger as n, the number of vertices

in the tree, increases. In the case of uniform random trees, distances grow by a factor of

n1/2. Hence, one would rescale distances by a factor of n−1/2. The limiting object then, as
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n approaches infinity, is called the Brownian Continuum Random Tree. This random limit

object is rather well understood. However, relatively little is known about the minimum

spanning tree as n goes to infinity.

We know that distances on the minimum spanning tree grow by a factor of n1/3. Recently,

it has been shown that the minimum spanning tree of Kn, with edge-lengths rescaled by

n−1/3, converges towards some random limit object, which belongs to the class of R-

trees [1]. We refer to it as the MST limit object and like to think of it as a measured metric

space. The sense in which the convergence to the MST limit object occurs is beyond the

scope of this study. However, it is important to know that both the convergence and

the limit object can be understood via sampling. Given k vertices, the k-reduced tree is

defined to be the subtree which only contains the paths between these vertices. If we pick

k vertices from the measure on the MST limit object and look at the distribution of the

k-reduced tree, then doing this for every k determines the distribution of the limit object.

Moreover, the sequence of k-reduced trees for MSTs on finite n converges to the limit

k-reduced tree, for every k ≥ 2, as n→∞.

Also from [1], we know that reduced trees on k randomly chosen vertices of the MST

limit object are binary and have all k vertices on the leaves (almost surely). They consist

of 2k − 3 segmental lengths, defined by the edges between vertices on the leaves and

internal vertices at which paths split. The arrangement of these segmental lengths up to

relabeling, we refer to as the tree shape. The aim of this study is to investigate other

distributional and combinatorial properties by simulating minimum spanning trees for a

relatively large number of vertices. We are interested in the total length and the segmental

lengths of reduced trees on up to 6 randomly chosen vertices as well as the influence of

the tree shape on these quantities.

Section 2 provides some scientific background. We illustrate fundamental concepts such

as the MST identified by Prim’s algorithm, compare uniform random trees with minimum

spanning trees and illustrate some distributional properties of the Brownian Continuum

Random Tree. Next, the scientific methods that are used for the simulation and analysis

of data on minimum spanning trees are outlined. Finally, results for the simulated data

are presented in section 4. We finish with some concluding remarks.
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Both the simulation of data as well as the analysis of the simulated data are implemented

in R. The accompanying code as well as explanatory remarks for simulation of data and

subsequent data analysis can be found in the appendix.
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2 Scientific Background

In this section the question under scrutiny is outlined in more detail. Some of the nec-

essary scientific background that is needed to understand the aim and the scope of the

study is presented here. We explain Prim’s algorithm for finding minimum spanning trees

and we emphasise the difference between minimum spanning trees and uniform random

trees. Finally, we illustrate some theoretical results for the limiting object of the uniform

random tree, as the number of vertices goes to infinity, known as the Brownian Contin-

uum Random Tree. A detailed summary of these can be found in [2]. This problem is

similar to the topic that we are concerned with, but, as opposed to the limiting behaviour

of minimum spanning trees, it is an area of graph limits that is rather well understood

and might therefore give us an idea of where to go and where to look in our analysis of

minimum spanning trees.

2.1 Finding the Minimum Spanning Tree

Once independent and uniformly distributed weights between 0 and 1 have been assigned

to all edges of the complete graph on n vertices, labelled as {1, 2, · · · , n}, several algo-

rithms are at our disposal for indentifying the minimum spanning tree, that is, the tree

containing all vertices with the lowest sum of weights. These algorithms include for ex-

ample Kruskal’s algorithm and Prim’s algorithm. In this study we make use of Prim’s

algorithm which provides more computational efficiency and implementation ease. For

Prim’s algorithm we can think of graphs in the form of matrices, where row i and col-

umn j represent the vertices i and j respectively, and the (i, j)-matrix entry represents the

weight assigned to the edge between those vertices. The matrix of a complete graph is

therefore symmetric and has missing values on the diagonal.

Figure 1 shows a simple example of a complete graph on 4 vertices. All edges have been

assigned independent uniform weights between 0 and 1. The equivalent matrix form of

the weighted complete graph is given underneath. The corresponding minimum spanning

tree is also shown in the figure.
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Figure 1: A weighted complete graph on 4 vertices (left) and the corresponding minimum spanning
tree (right)
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Prim’s algorithm proceeds as follows. At each stage we have a tree. Start from a single

vertex and, at each step, add the edge between the current tree and a new vertex of lowest

weight. Translated into the matrix based algorithm, we can just start with any column

(vertex), say the column labelled 1. From our initial matrix we pick the entry with the

lowest value in column 1. In the example of Figure 1, this entry corresponds to the edge

between vertex 1 and 4 weighted 0.44. This edge is part of the minimum spanning tree.

Next we cancel out all values in row 1 and 4, since these two vertices are now included in

the tree:


− 0.73 0.52 0.44

0.73 − 0.62 0.27

0.52 0.62 − 0.29

0.44 0.27 0.29 −

 −→

− − − −

0.73 − 0.62 0.27

0.52 0.62 − 0.29

0.44 − − −


Iteration step: From the respective columns of all vertices that are already included in the
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tree we pick the entry with the lowest value. We then cancel out all values of the row in

which this entry lies. This step must be repeated until all vertices are included in the tree.

This algorithm identifies the unique minimum spanning tree. In our example:


− − − −

0.73 − 0.62 0.27

0.52 0.62 − 0.29

0.44 − − −

 −→

− − − −

− − − 0.27

0.52 0.62 − 0.29

0.44 − − −



−→


− − − −

− − − 0.27

− − − 0.29

0.44 − − −


The minimum spanning tree in our example contains the edges between the vertex pairs

(1, 4), (2, 4) and (3, 4) as illustrated in Figure 1. Notice that in the figure we are not

interested in the absolute positions of vertices on the plane or the lengths of the edges.

For later computations all edges are assumed to have the same rescaled length of n−1/3.

The assigned weights are not of interest either as soon as the minimum spanning tree has

been identified. They are merely a tool for the selection of the tree. The only important

piece of information is the existence or nonexistence of an edge between two vertices in

the selected tree.

2.2 The Difference between Minimum Spanning Trees and Uniform

Random Trees

Assigning independent uniformly distributed weights to the edges of the complete graph

on n vertices and identifying the minimum spanning tree is a selection procedure seeking

a particular tree that contains all n vertices. Intuitively, one might think that this selection

procedure is equivalent to sampling from Sn, the set of all trees on n vertices, uniformly at

random, in other words, that the minimum spanning tree is nothing but a uniform random

6



tree. However, the intuition is misleading in this case. In fact, the results turn out to be

quite different.

As before we consider a complete graph on 4 vertices, labelled {1, 2, 3, 4}. Cayley’s

formula tells us that there are 16 (= 44−2) distinct trees on 4 vertices and therefore there

are 16 spanning trees in a complete graph on 4 vertices. Choosing one of these trees

uniformly at random leads to a uniform random tree.

Figure 2: Possible shapes for trees on 4 vertices (labelled {1, 2, 3, 4}): there are 4 combinations with
"Star Shape" and 12 combinations for which all vertices lie in a row

[1,2,3 or 4]

4 Combinations

1

2

3

4
12 Combinations

Figure 3: Difference between uniform random trees and minimum spanning trees on 4 vertices: bar
shart of the number of selected trees with distinct shape (1 to 4 represent trees with "Star Shape"; 5 to
16 represent trees in which all vertices lie in a row) - 200,000 simulations for each selection procedure
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Figure 2 illustrates the two distinct structures that the spanning trees on 4 vertices could

adopt; either one vertex is directly connected to all other vertices forming the "star shape",
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or all vertices lie in a row, that is, each node has at most two edges. For the former,

there are obviously 4 different combinations, whereas for the latter, there are 12 distinct

combinations. In fact, there are 24 ways of arranging 4 objects in a row. However, in

this case, combinations of inverted order are considered to be equivalent ([1↔ 2↔ 3↔

4] ≡ [4↔ 3↔ 2↔ 1]). Hence, 4!/2 = 12 distinct combinations are possible.

When selecting a uniform random tree, each of these distinct combinations has equal

probability of being chosen. From Figure 3 we can see that this feature is not present in

minimum spanning trees. Star shaped trees, in which one vertex is directly connected to

all other vertices, have higher probability of being chosen as the Monte Carlo experiment

illustrates.

It is in fact easy to demonstrate that this ought to be the case. Remember that the MST

is determined by the ranking of the edges, rather than the actual values. There are 6

edges in the complete graph on 4 vertices, Vn = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)},

where (i, j) denotes the edge that connects the vertices i and j. Hence, there are 6! =

720 possible rankings, each of which is equally likely to occur in the i.i.d. setting. We

show that there are 48 rankings which lead to the star shaped MST in which vertex 1

is directly connected to all other vertices, that is, the tree with the subset of vertices

{(1, 2), (1, 3), (1, 4)}, denoted Tn.

It is easy to see that the first two edges of the ranking (ranked by increasing weight) are

always included in the MST. Hence, there have to be 2 out of 3 edges from Tn on the first

two ranks. Then, the following two possibilities exist:

A) Obviously, if the remaining third edge is on the third rank, we find the desired MST

represented by Tn. For this event there are 3!× 3! = 36 possible rankings.

B) It is also possible that the remaining third edge of Tn is on the fourth rank. Then,

however, it would be a necessary condition that the unique edge that forms a cycle with

the first two edges is on the third rank. For, this edge could not be included in the MST.

There are
(

3
2

)
× 1× 1× 2! = 12 possible rankings for this event. The following ranking

would be an example: (1, 2), (1, 3), (2, 3), (1, 4), · · · .

There are no other rankings than those provided under A) and B) that would lead to the

8



desired subset Tn. By symmetry, the probability for any star shaped MST to occur is thus

48/720. Yet, 48/720 = 1/15 > 1/16. We have thereby shown that star shaped trees are

more likely to occur than trees for which all vertices lie in a row.

Figure 4: A unniform random tree (left) and a minimum spanning tree (right) on 3000 vertices

This proof as well as its empirical illustration correspond to the fact that the distances on

minimum spanning trees, as n → ∞, grow by a factor of n1/3, whereas the distances on

uniform random trees grow faster, by a factor of n1/2. Roughly speaking, uniform random

trees tend to be more stretched than minimum spanning trees. This is also illustrated in

Figure 4.

2.3 Illustration of Theoretical Results for Uniform Random Trees

Consider a uniform random tree on n vertices, labelled {1, 2, · · · , n}. As n approaches

infinity and distances of the tree are rescaled by n−1/2, the tree converges to the so-called

Brownian Continuum Random Tree. It satisfies the following conditions [2]:

1. the reduced tree on k randomly chosen vertices is a binary tree with all chosen ver-

tices on the leaves (almost surely). The tree shape of the k-reduced tree is uniformly

distributed on the set of binary trees with k labelled leaves,

2. the 2k− 3 segmental lengths of the reduced tree follow a joint probability distribu-

9



tion of the form:

f(`1, · · · , `2k−3) =

(
2k−3∑
i=i

`i

)
exp

−1

2

(
2k−3∑
i=i

`i

)2
 ,

3. points 1. and 2. are independent.

Consider for example Figure 16 on page 25 or Figure 18 on page 28 as an illustration of

the 2k − 3 segmental lengths of a k-reduced tree for k = 3 and 4 respectively.

In the following we try to illustrate these theoretical results by simulation of uniform

random trees on 2000, 3000 and 4000 vertices. We pick k = 2 and 3 of those vertices

uniformly at random and compute the 2k − 3 (1 for k = 2 and 3 for k = 3) resulting

distances of the reduced tree. Instead of considering only the segmental lengths, we will

also focus on the total length of the reduced trees, that is, the sum of all segmental lengths.

The density function against which we compare the simulated total lengths can be derived

from the above expression (joint density of segmental lengths) as follows.

Let n = 2k−3 and think about doing the change of variables x1 = `1, x2 = `2, . . . , xn−1 =

`n−1, T =
∑n

i=1 `i. This transformation has Jacobian 1 and so we conclude that the joint

density of the new variables is Te−T 2/2. But now we need to integrate out the variables

x1, x2, . . . , xn−1 under the constraint that x1 + x2 + . . . + xn−1 ≤ T . It is clear that the

answer has to be proportional to T n−1. Hence, the marginal density in T is proportional

to:

T ne−T
2/2 = T 2k−3e−T

2/2.

One can then check that the correct normalising constant to make this a density that inte-

grates to 1 must be:

1/(2k−2(k − 2)!).

10



This is, in fact, the density of the square root of a Gamma random variable, Γ(k−1, 1/2).

Hence, in the cases of k = 2 and k = 3, we compare our simulations of reduced trees

with total length T against the following two density functions respectively:

Te−T
2/2 and

1

2
T 3e−T

2/2.

Figure 5: Histograms of total length (distance) between 2 randomly chosen vertices from uniform
random trees on 2000, 3000 and 4000 vertices (rescaled by n−1/2) and limiting distribution Te−T 2/2

(red)
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Figure 6: Histograms of total length of reduced trees on 3 randomly chosen vertices from uniform
random trees on 2000, 3000 and 4000 vertices (rescaled by n−1/2) and limiting distribution 1

2T
3e−T 2/2
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Figure 5 contains histograms of the rescaled (by n−1/2) lengths between two randomly

chosen vertices from uniform random trees on 2000, 3000 and 4000 vertices. We can see

that the empirical results based on 20,000 simulations concur with the overlaid theoretical

density.
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Figure 6 shows histograms of the total length of the reduced trees on 3 randomly chosen

vertices. For 10,000 simulations the empirical results are again in close agreement with

the theoretical density.

Figure 7: Histograms of segmental lengths (as proportions of total length) in reduced trees on 3
randomly chosen vertices from uniform random trees on 4000 vertices and limiting distribution
Dirichlet(1, 1, 1) - marginal distirbutions, Beta(1, 2), are plotted over each histogram (red)
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Figure 7 shows histograms of proportions of the total length for the 3 segmental lengths of

reduced trees on 3 randomly chosen vertices. These proportions follow aDirichlet(1, 1, 1),

that is, the proportions (l1, l2, l3) are uniformly distributed on the 2-dimensional simplex.

Their marginal distributions are therefore Beta(1, 2) for each proportion. Use of 10,000

simulations of uniform random trees on 4000 vertices seems sufficient to observe the

asymptotic distribution.

The analysis implemented above serves as a prototype of what follows in section 4 on the

properties of the MST limit object.
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3 Summary of Methods to be used

This section contains a brief discussion of the methods and tools of analysis to be used in

this study. Firstly, we describe how minimum spanning trees are simulated. Secondly, the

exploration of simulated trees is outlined. Lastly, two non-parametric density estimation

techniques, namely kernel smoothing and log-concave density estimation, as well as two

parametric approaches are introduced.

3.1 The Simulation of Trees

In order to simulate a minimum spanning tree on n vertices, labelled {1, 2, · · · , n}, we

start with the complete graph on n vertices, that is, an undirected graph in which every

pair of distinct vertices is connected by a unique edge. We assign independent uniformly

distributed weights between 0 and 1 to each of the n(n−1)/2 edges in the complete graph

and arrange them in matrix form as described in section 2.1. Then, Prim’s algorithm can

be applied to the complete graph in matrix form in order to identify the minimum spanning

tree. This is computationally straightforward.

In R the independent uniform (pseudo) random numbers between 0 and 1 are by default

generated using the Marsenne twister MT-19937 [16], a pseudo random number generator

developed by Makoto Matsumoto and Takuji Nishimura in 1997 [9]. It is based on the

Marsenne prime number 219937 − 1.

Once these pseudo random numbers are assigned to the edges of the complete graph

and the minimum spanning tree is identified using Prim’s algorithm, the only information

needed for subsequent analysis is which vertices are directly connected by the n−1 edges

of the MST. This information can be stored in the form of n − 1 pairs of labels of the

respective vertices that are directly connected. This can be done by storing information

as graph objects, which is a special class of objects in the igraph-package in R. Note that

the generated weights are no longer of interest.

A large set of data of different tree sizes (2000, 3000 and 4000 vertices) was simulated.

For the gathering of each observation, we simulated a new minimum spanning tree. Up to
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30,000 repetitions are computationally very expensive and can take more than 48 hours

even when multiple core processors are used. For this study a computer with quad-core

Intel(R) Core(TM) i7-3770S CPU @ 3.10GHz processor and 8GB RAM has been used.

Selected parts of the R-code that generated the data can be found in the appendix. The

entire code and data sets are available on request.

3.2 The Exploration of Trees

Once a minimum spanning tree is identified, we are interested in the distances between

randomly chosen vertices on the tree. We can think of the tree as a measured metric

space, Mn, in which distances are rescaled by n−1/3 and mass 1/n is assigned to each

vertex [1, p. 5].

We are interested in the combinatorial structure and the distribution of distances in re-

duced trees on k randomly chosen vertices from minimum spanning trees. We start with

k = 2, that is, the simple question: how is the distance between two randomly chosen

vertices on the minimum spanning tree distributed? By definition, on a tree there is only

one simple path between any two vertices. Imagine that on a specific tree there are 4 ver-

tices on the unique path between two randomly chosen vertices. That means the length

between those two vertices is 5, since one had to traverse 5 edges to reach the other vertex.

In the rescaled metric of Mn this distance would then be 5× n−1/3.

As in the case of uniform random trees, the reduced tree on k vertices of a minimum

spanning tree is binary in the limit and has the k vertices on the leaves (almost surely) [1].

As k gets larger, naturally, the total length of the reduced tree grows. However, given

that the tree is binary in the limit, for k ≤ 5 there is only one genuinely distinct struc-

tural shape for the reduced (unrooted) tree. For k = 6 there exist two genuinely distinct

structural shapes as illustrated in the following section in Figure 22 on page 32. In fact,

as we work with trees on up to 4000 vertices as an approximation to the limiting object,

we will sometimes find reduced trees on randomly chosen vertices that are not binary or

in which some of the chosen vertices are not on the leaves. When considering the pro-

portions of segmental lengths of the total length of the reduced tree, we will ignore these
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cases. Theoretically speaking, we therefore examine the distribution of these proportions

conditioned on the event that the reduced tree is indeed binary and has the chosen vertices

on the leaves, that is, an event which has probability 1 in the limit.

3.3 Probability Density Estimation

In order to investigate the distribution of the total length and the proportions of the seg-

mental lengths of the reduced trees on up to k = 6 vertices, we make use of different

non-parametric and parametric approaches.

Kernel Density Estimation

Without imposing the constraints of prescribing a parametric model, kernel density esti-

mation techniques provide a way of finding structure in data. For a simulated data set,

X1, X2 · · · , Xm, we fit a smooth density function according to the following formula [15,

p. 11]:

f̂σ(x) = m−1

m∑
i=1

Kσ(x−Xi) = (mσ)−1

m∑
i=1

K((x−Xi)/σ),

where the kernelK is a function that integrates to 1,
∫
K(x)dx = 1. We choose the kernel

to be the density of a standard normal distribution. We thus call it the normal kernel. Kσ

is the rescaled kernel, defined as Kσ(x) = σ−1K(x/σ), where σ is called the bandwidth.

The choice of the bandwidth is essential. On the one hand, one doesn’t want to smear

out real peaks, and on the other hand, we would like to get rid of insignificant noise. In

mathematical terms, there is a trade-off between bias and variance of f̂σ(x). The larger σ

is chosen to be, the larger the bias of the estimate and the smaller its variance.

In our analysis, σ is chosen to minimize an estimation of the mean integrated square

error:
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MISE = E
∫

[f̂σ(x)− f(x)]2dx,

which after some computation leads to the optimal bandwidth [14, pp. 128-129]:

σAMISE =

( ∫
K2

m
∫

(f ′′)2{
∫
x2K}2

)1/5

.

This corresponds to the direct plug-in estimator as described in Sheather and Jones (1991)

and Wand and Jones (1995) [14, p. 129] and it involves the integral of an unknown func-

tion,
∫

(f ′′)2. This requires knowledge of the very function we want to estimate. Using a

reference bandwidth, we estimate
∫

(f ′′)2. This bandwidth for estimating
∫

(f ′′)2 is taken

as a function of σ (proportional to σ5/7) [13–15]. This concludes the discussion on how

the bandwidths of normal kernel density estimates are selected in this study.

Log-Concave Density Estimation

For kernel density estimations, no restrictive assumptions are made about the shape of the

underlying distribution. We will see, however, that based on the kernel estimates some

reasonable assumptions can be made in order to narrow the class of distributions we are

dealing with. One of these assumptions is log-concavity. A density function on R is

log-concave if and only if:

f(x) = exp(φ(x)),

for some concave function φ : R → [−∞,∞). Given a sample of i.i.d. random vari-

ables, X1, X2, · · · , Xm, we maximize the normalized log-liklihood function, which is a

functional in this setting [12, p. 2]:

l(φ) = m−1

m∑
i=1

log(f(Xi)) = m−1

m∑
i=1

φ(Xi),

over all concave functions φ : R → [−∞,∞), such that
∫

exp(φ(x))dx = 1. The
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resulting maximum likelihood estimates φ̂ and f̂ = exp(φ̂) are unique and consistent

[3, 7].

The maximum likelihood estimator over the whole class of unimodal density functions

does not exist [4, 12]. However, it exists for log-concave density functions which are a

subclass of unimodal density functions. This is one advantage of applying log-concave

density estimation. It can be a useful restriction on the class of possible density functions.

The implementation of log-concave density estimation in this study is based on the R-

package logcondens developed by Rufibach and Dümbgen [11]. An example for a log-

concave density function would be the density of a Gamma-distribution. The Gamma-

model is one of the parametric approaches used in this study.

Parametric Models

Two parametric approaches are implemented in this study. Firstly, for the distribution of

the total length of the reduced tree on 4 vertices, a Gamma-distribution, f(x, k, θ) =

θk

Γ(k)
xk−1e−θx with shape parameter k and scale parameter θ, is fitted. The log-likelihood

for this model is given by:

l(x1, x2, · · · , xm|k, θ) = (k − 1)
m∑
i=1

xi − θ
m∑
i=1

xi −m log(Γ(k)) +mk log(θ).

The maximum likelihood estimate for θ is easily found to be θ̂MLE = k/(m−1
∑m

i=1 xi).

However, there is no closed form solution for k̂MLE . An iterative quasi-Newton method is

implemented in order to solve the equations. The method was published simultaneously in

1970 by Broyden, Fletcher, Goldfarb and Shanno and is specified by “BFGS” in R [10,17].

Secondly, a Dirichlet-distribution is fitted to the proportions of the total length of each

segmental length in reduced trees on k = 3, 4, 5 and 6 vertices. A reduced tree on 3

vertices (if it is binary and has the three vertices on the leaves) has 3 segments as illustrated

in Figure 16 on page 25. The proportions of the total length of these segments sum

up to 1. Hence, the Dirichlet-distribution for 3 (4, 5 or 6 respectively) variables as a
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generalization of the Beta-distribution is a reasonable choice. Its density is given by:

f(p1, p2, p3|α1, α2, α3) =
1

B(α)

3∏
i=1

pαi−1
i ,

where B is the normalizing Beta-function, defined as B(α) =
∏3

i=1 Γ(αi)

Γ(
∑3

i=1 αi)
and the expo-

nents αi for i ∈ {1, 2, 3} are the shape parameters of the distribution. The likelihood for

this model for m observations is given by:

L(P |α1, α2, α3) =
m∏
k=1

(
1

B(α)

3∏
i=1

pαi−1
i,k

)
.

The log-likelihood can be written as:

l(P |α1, α2, α3) =
m∑
k=1

(
3∑
i=1

(αi − 1) log(pi,k)

)
−m log(B(α)).

The first order conditions on αi, i ∈ {1, 2, 3} are given by:

∂

∂αi
l(P |α1, α2, α3) =

m∑
k=1

log(pi,k)−m
∂

∂αi
log(B(α))

!
= 0.

In order to find a numerical solution for the maximum likelihood estimates of these pa-

rameters the “BFGS” method is used as in the Gamma-model described above [8, p. 10].
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4 Detailed Analysis of Simulated Data

In this section the simulated data is analysed in detail. We start with the distance be-

tween 2 randomly chosen vertices. Thereafter, the total lengths of reduced trees on 3

and 4 randomly chosen vertices are examined. Finally, we focus on the combinatorial

structure of reduced trees on up to 6 randomly chosen vertices. We apply non-parametric

approaches for density estimation such as kernel smoothing and log-concave density esti-

mation, as well as parametric models such as the Gamma-model for the total length and

a Dirichlet-regression for the proportions of segmental lengths.

4.1 The Total Length of Reduced Trees on up to 4 Randomly Chosen

Vertices

Once a minimum spanning tree is simulated we choose 2 vertices uniformly at random

and calculate the distance of the unique path from one vertex to the other on the tree. As

we wish to approximate the limit object of the rescaled MST, it is important to simulate

trees on as many vertices as possible. However, the need for accuracy is limited by com-

putational capacity. Figure 8 shows three histograms for the rescaled distance between 2

randomly chosen vertices for minimum spanning trees on 2000, 3000 and 4000 vertices

respectively.

Figure 8: Histograms of total length (distance) between 2 randomly chosen vertices from minimum
spanning trees on 2000, 3000 and 4000 vertices (rescaled by n−1/3)
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We can see that as the number of vertices in the tree grows, the distribution becomes more

regular. The first important result that we can infer from this figure is that the distance

between two randomly chosen vertices seems to follow a unimodal distribution. There

are no unusual peaks or bumps observed in the histograms.

Figure 9: Kernel density estimates using a normal distribution with standard deviation 0.17 for total
length (distance) between 2 randomly chosen vertices from minimum spanning trees on 2000 (blue),
3000 (green) and 4000 (red) vertices.
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The kernel density estimates plotted in Figure 9 also illustrate the seemingly unimodal

form of the distribution. For the different tree sizes the distributions do not vary sub-

stantially. However, we can see that for fewer vertices the kernel estimates become less

regular.

Figure 10: Histograms of total length of reduced trees on 3 randomly chosen vertices from minimum
spanning trees on 2000, 3000 and 4000 vertices (rescaled by n−1/3)
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The histograms and the normal kernel density estimates for the total length of reduced

trees on 3 vertices are presented in Figure 10 and Figure 11. We observe very similar

distributional properties. Again, the simulated data suggests that the total length follows

a unimodal distribution. In the following, only data for minimum spanning trees on 4000

vertices is considered, as we want to avoid noise because of being too far from conver-

gence to the limit object.

Figure 11: Kernel density estimates using a normal distribution with standard deviation 0.21 for the
total length of reduced trees on 3 randomly chosen vertices from minimum spanning trees on 2000
(blue), 3000 (green) and 4000 (red) vertices.
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Figure 12: Total length of reduced trees on 4 randomly chosen vertices from minimum spanning
trees on 4000 vertices (rescaled by n−1/3): histogram (left), kernel density estimate using a normal
distribution with standard deviation 0.19 (right), based on 20,000 observations
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Figure 12 contains a histogram and a normal kernel density estimate for the reduced tree

on 4 randomly chosen vertices. For all three previous cases, the total length of subtrees
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on 2, 3 and 4 vertices, we observe fairly similar unimodal distributions that are shifted

towards higher values as the number of chosen vertices increases. This natural tendency

is illustrated in Figure 13 which also contains normal kernel estimates of the cumulative

distribution function.

Figure 13: Kernel density estimates using a normal distribution with standard deviation 0.20 for
the total length of reduced trees on 2 (blue), 3 (green) and 4 (red) randomly chosen vertices from
minimum spanning trees on 4000 vertices (left); corresponding cumulative distribution functions
(right)

0.0

0.1

0.2

0.3

0 5 10

de
ns

ity

Randomly Chosen Vertices k=2 k=3 k=4

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0 12.5

C
D

F

Randomly Chosen Vertices k=2 k=3 k=4

A second important property that we can infer from the kernel density estimates is that

the right tails seem to be exponential. In fact, the following exponential curve model:

f̂(xi) = β1 exp(−β2xi) + εi

provides a very good fit to the right tail of the kernel density estimate for the total length of

the reduced tree on 4 vertices as plotted in Figure 13. Heuristically, we define the right tail

as the area where the rescaled total length is higher than 8.5. The non-linear least squares

estimates for the parameters of the exponential curve on this area are β1 = 4487.00 and

β2 = 1.39. They have standard errors of 233.800 and 0.006 respectively and both p-values

are less than 0.001. The residual standard error is 0.0002 on 99 degrees of freedom. For

the estimation of the parameters, 100 evenly spaced data points, in steps of 0.025 along

the x-axis, have been used.
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Figure 14: Right tail of the kernel density estimate (black) of the total length of reduced trees on 4
randomly chosen vertices as seen in Figure 13 and fitted exponential curve (yellow); on original scale
(left) and log-scale (right)
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Figure 15: Log-concave density estimate (green) and maximum likelihood estimate of Gamma-model
(blue) compared to the normal kernel density estimate (black) and the histogram of simulated data
for the total length of reduced trees on 4 randomly chosen vertices from minimum spanning trees on
4000 vertices, based on 20,000 observations
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Figure 14 illustrates the goodness of fit for the exponential curve model. On a log-scale

we can see that the right tail of the density is almost linear. We also notice from Figure

14 that the log-density appears to be concave which gives us access to more specific tools

of density estimation, known as log-concave density estimation.

As described in section 3.3 the functional (normalized log-likelihood) has been maxi-

mized over the set of all concave functions φ : R→ [−∞,∞), such that
∫

exp(φ)dx = 1.

The result is shown in the first row of Figure 15. We can see that the kernel density esti-

mate and the log-concave density estimate are almost identical. This observation indicates

that the assumption of log-concavity is indeed supported by the simulated data.

We can push the analysis one step further by implementing a parametric model. Since

we are concerned with a positive random variable, given its log-concavity and overall

shape, the Gamma-distribution seems to be an intuitive choice. A maximum likelihood

approach leads to estimates of the shape parameter of k̂ = 13.235 and the scale parameter

of θ̂ = 2.467, in the parametrisation of section 3.3. Their standard deviations are given by

0.107 and 0.020 respectively. Since the Gamma-density meets the regularity conditions,

for instance formulated in [6, p. 118], we may use normal approximation to compute the

following 95% confidence intervals for the estimates:

CI95%
k = (13.026, 13.444) and CI95%

θ = (2.427, 2.506).

From the two lowermost plots in Figure 15 we can see that the estimatedGamma-density,

Γ(13.235, 2.467), does not match the kernel density estimate as accurately as the log-

concave density estimate. We can see that the kernel density estimate is slightly more

skewed to the right in the highest density area. However, the simulated data suggests

that the Gamma-distribution can serve as a useful approximation to the distribution of

rescaled total lengths of reduced trees on 4 randomly chosen vertices.
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4.2 The Structure and Shape of Reduced Trees on up to 6 Randomly

Chosen Vertices

We will now focus on the combinatorial structure and shape of the reduced trees on up to 6

randomly chosen vertices from minimum spanning trees on 4000 vertices. As mentioned

before, the reduced trees satisfy two properties in the limit [1]:

1. they are binary trees,

2. they have the chosen vertices on the leaves (almost surely).

Therefore, especially for low numbers of chosen vertices, there is only a relatively small

set of possible shapes for reduced trees. However, as we are only working with an approx-

imation of the MST limit object, we will always find reduced trees of other shapes. These

will be neglected in the following analysis. This means that we are in fact investigating

distributions conditional on the event that the reduced trees satisfy the conditions 1 and 2

- an event that has probability 1 in the limit.

Reduced Trees on 3 Randomly Chosen Vertices

Figure 16: Shape of the reduced tree on 3 randomly chosen vertices (relabelled {1, 2, 3})
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Figure 16 shows the only reduced tree for 3 chosen vertices that satisfies the conditions

1 and 2. As we can see the reduced tree on 3 vertices has 3 segmental lengths that sum
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up to the total length. We denote li the length next to vertex i. A reduced tree on k

vertices would have 2k− 3 segmental lengths as illustrated later. We will now investigate

the proportions of these segments, that is, the percentage of the total length for each

individual segment of the tree.

Evidently, these proportions sum up to 1. By symmetry, in the case of 3 randomly cho-

sen vertices, one would also assume that these proportions all follow the same distribu-

tion. Hence, an intuitive model for these dependent distributions would be a Dirichlet-

distribution with equal shape parameters.

Figure 17: Histograms of segmental lengths (as proportions of total length) in reduced trees on 3 ran-
domly chosen vertices from minimum spanning trees on 4000 vertices with normal kernel density es-
timate (red) and Beta(1.52, 3.04)-density function (blue) (marginal distribution of a Dirichlet(1.52,
1.52, 1.52) ), based on 28,994 observations
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There are several details of Figure 17 that are worth mentioning. Firstly, it contains the

histograms of the proportions for 28,994 simulated observations. In fact, 30,000 obser-

vations have been simulated, but 1,006 reduced trees did not satisfy the two before men-

tioned conditions and were removed from the data set. These form only a small proportion

of 3.35% of the whole data set. Secondly, the kernel density estimates are overlaid in red

colour. Thirdly, the density function of a Beta(1.52, 3.04)-distribution is plotted on each

histogram in blue.

We can see that the distributions of the proportions indeed seem to be equal and that the

parametric density estimate is close to the kernel density estimate. The coefficients for

the Beta-distribution have been chosen based on the result of a maximum likelihood esti-

mation for a Dirichlet-distribution. The marginal distributions of Dirichlet-distributed
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proportions are Beta-distributed. In fact, the maximum likelihood estimates for the three

shape parameters are α1 = 1.530, α2 = 1.520 and α3 = 1.514 for the three lengths

respectively. Hence, the choice of plotting the density functions of a Beta(1.52, 3.04)-

distribution is made. Strictly speaking, the marginals are Beta(αi,
∑

j αj − αi)). The

95% confidence intervals for the estimates based on normal approximations have an in-

tersection of (1.512, 1.533) that contains 1.52.

The precise 95% confidence intervals are given by:

CI95%
α1

= (1.512, 1.549), CI95%
α2

= (1.502, 1.539) and CI95%
α3

= (1.496, 1.533).

The p-value of the Kolmogorov-Smirnov test for any two of the three proportions is well

above 5%, indicating that we cannot reject the null hypothesis of identical distributions.

In the case of 3 randomly chosen vertices from the minimum spanning tree, we can there-

fore suggest that the segmental lengths are exchangeable, just like in uniform random

trees. However, the proportions of these lengths are not uniformly distributed on the

2-dimensional simplex. This is a difference compared to uniform random trees.

Reduced Trees on 4 Randomly Chosen Vertices

As for 3 vertices, there is only one possible reduced tree shape for 4 randomly chosen

vertices that is binary and has the chosen vertices on the leaves. This is shown in Figure

18. Again, by symmetry, we would expect to find equal distributions for the lengths of the

4 external edges, l1, l2, l3 and l4. However, there is no obvious reason why the length of the

internal edge, l5, should have the same distribution. Surprisingly, it is the case for uniform

random trees that all these lengths follow the same distribution and are exchangeable, but

as Figure 19 reveals, this might not be the case for minimum spanning trees.

20,000 observations have been simulated for the reduced tree on 4 randomly chosen ver-

tices, 1,827 of which had other shapes than the one shown in Figure 18. These form 9.14%

of the simulated observations, which is substantially more than in the previous case. As
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Figure 18: Shape of the reduced tree on 4 randomly chosen vertices (relabelled {1, 2, 3, 4})
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Figure 19: Histograms of segmental lengths (as proportions of total length) in reduced trees on 4
randomly chosen vertices from minimum spanning trees on 4000 vertices with normal kernel density
estimate (red) and Beta-density functions (blue) (marginal distributions of a Dirichlet(1.57, 1.57,
1.57, 1.57, 1.24)), based on 18,173 observations
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before, these observations have been removed from the data set. Figure 19 shows his-

tograms, kernel density estimates and the marginal distributions of a Dirichlet-model

estimate. In this case the plotted Beta-density functions have coefficients (1.57, 5.92)

for l1, l2, l3 and l4 and (1.24, 6.28) for l5. The estimated coefficients from the Dirichlet-

model are α1 = 1.569, α2 = 1.564, α3 = 1.580, α4 = 1.574 and α5 = 1.240 with

estimated standard deviations of 0.0065 for the first four and 0.0066 for the fifth.

The 95% confidence intervals for the first four estimates have intersection of (1.560, 1.584)

which contains 1.57, the parameter used in the graphical representation. The precise 95%

intervals are given by:

CI95%
α1

= (1.549, 1.589) , CI95%
α2

= (1.544, 1.584), CI95%
α3

= (1.560, 1.600),

CI95%
α4

= (1.554, 1.594) and CI95%
α5

= (1.225, 1.257).

Using Kolmogorov-Smirnov tests for any two of the first four proportions leads to high

p-values, well above any reasonable significance level. Here, we cannot reject the null

hypothesis of equal distributions. Yet, if we apply the test for the fifth and any of the first

four proportions, the p-value is always less than 0.001. In this case we strongly reject the

null hypothesis and conclude that these proportions follow different distributions. Hence,

l5 and li for i ∈ {1, 2, 3, 4} are not exchangeable. However, as we expected, the first four

proportions seem to be exchangeable. This is another difference compared to uniform

random trees, for which all lengths are exchangeable for any number of chosen vertices.

Reduced Trees on 5 Randomly Chosen Vertices

For the reduced tree on 5 randomly chosen vertices, we have again only one genuinely

distinct structural shape that satisfies our two conditions. The two trees shown in Figure

20 are in fact the same up to relabeling. The representation of the trees as being rooted is

misleading. In fact, we are considering unrooted trees here, so the two trees are identical.

If one designated vertex 3 of the tree on the right to be the root, it would coincide with the

29



tree on the left, except for the labelling. In the previous cases, for 3 and 4 vertices, it does

not actually matter whether we think of the trees as being rooted or not, there is only one

shape anyway. Yet, for 5 vertices this distinction is essential.

Figure 20: Shape of the reduced tree on 5 randomly chosen vertices (relabelled {1, 2, 3, 4, 5}). These
two trees are not genuinely different when we think of them as being unrooted. One tree is just a
relabelled version of the other.
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Figure 21: Normal kernel density estimates for segmental lengths (as proportions of total length) in
reduced trees on 5 randomly chosen vertices, based on 17,038 observations
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For 5 randomly chosen vertices, we have 2 internal edges, l6 and l7, and 5 external edges,

l1, l2, l3, l4 and l5, that connect to the leaves. Again, 20,000 observations have been simu-

lated, 2,962 of which have a different structure than the tree shown in Figure 20, that is,

they are either not binary, or some of the chosen vertices are not on the leaves, or both.

This constitutes a removal of 14.84% of the data set.

Figure 21 shows the normal kernel density estimates for the proportions of the total
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length. We notice an obvious difference between external edges and internal edges.

The latter tend to be shorter and their distribution possesses a more prominent peak.

Within those two groups the distributions appear to be equal. In fact, a Dirichlet-

regression leads to parameter estimates in the interval (1.611, 1.619) for the first five

proportions (external edges), and parameter estimates of 1.248 and 1.256 for l6 and l7

respectively (internal edges), which would result in estimated marginal distributions close

to Beta(1.61, 8.94) and Beta(1.25, 9.30). The standard deviations of the estimated pa-

rameters of the Dirichlet-distribution lie in the interval (0.0062, 0.0065), leading to con-

fidence intervals of similar size as in the previous cases.

Applying the Kolmogorov-Smirnov test to the different proportions of external edges,

we find again that the null hypothesis of equal distributions cannot be rejected on any

common confidence level. The lowest p-value observed here is 0.364 (between l2 and

l3), and the highest being 0.990 (between l4 and l5). At a 5% confidence level we cannot

reject the null hypothesis of equal distributions for the proportions of the internal edges

(l6 and l7), however at a 10% level we could (p-value 0.066). For any combination of an

internal and an external edge the test returns p-values that are less than 0.001. Again, we

strongly reject the null hypothesis and conclude that these lengths are not exchangeable.

Yet, external edges seem to be exchangeable among each other. For internal edges, this

claim cannot not be formulated with great confidence, but it might well be the case. In

fact, given the symmetry of the reduced tree, it should be.

Reduced Trees on 6 Randomly Chosen Vertices

Finally, we analyse the reduced tree on 6 randomly chosen vertices, which is a special

case, since for the first time there exist two genuinely different structural shapes that are

binary and have the chosen vertices on the leaves. Figure 22 illustrates these two shapes.

It is of interest how often each shape appears and whether these shapes have an impact on

the distributions of the total length of the tree as well as its segmental lengths.

We simulated 20,000 reduced trees from minimum spanning trees on 4000 vertices, 4321

(21.61%) of which had a different shape than the two shown in Figure 22 and were re-
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Figure 22: The two genuinely different shapes of reduced trees on 6 randomly chosen vertices (rela-
belled {1, 2, 3, 4, 5, 6})
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Figure 23: Comparison of total lengths between the two genuinely different shapes of reduced trees
on 6 randomly chosen vertices. Histogram for shape 1 for 13,264 observations (left); Histogram for
shape 2 for 2415 observations (middle); QQ-Plot for both samples (right) - shapes labelled as in Figure
22.
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moved. We notice a clear tendency: as the number of randomly chosen vertices increases

relative to the number of vertices in the minimum spanning tree, more observations are

generated that do not satisfy the two known properties of the limiting object. Interestingly,

13,264 observations took shape 1 (84.60%), but only 2,415 observations (15.40%) took

shape 2 (as seen in Figure 22). This means that shape 1 appeared 5.5 times more often

than shape 2.

Figure 23 shows histograms of the total length for the two different shapes as well as a

QQ-plot for both samples. There is no obvious difference between the two distributions.
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Only at the tails the QQ-plot reveals some inconsistencies, but this might be due to the fact

that the sample for shape 2 is so much smaller and therefore the tails are not sufficiently

covered. The Kolmogorov-Smirnov test leads to a p-value of 0.561, indicating that the

null hypothesis of equal distributions cannot be rejected at a reasonable significance level.

Hence, the shape of the reduced tree seems to have no impact on the distribution of the

total length.

What about the edges of the reduced tree? We have 6 external edges and 3 internal edges.

Figure 24 shows kernel density estimates of the proportions of the total length for each

of the edges for both possible shapes. As before, there is an obvious difference between

the distributions for external and internal edges. We observe the same overall pattern as

before. Internal edges tend to be shorter and their distribution possesses a more prominent

peak compared to the distribution for external edges. Between the two shapes there are

again no obvious differences.

Figure 24: Normal kernel density estimates for segmental lengths (as proportions of total length) in
reduced trees on 6 randomly chosen vertices, based on 13,264 observations for shape 1 (top) and 2,415
observations for shape 2 (bottom)
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For each of the two distinct shapes, we cannot reject the null hypothesis of the Kolmogorov-

Smirnov test for any two of the external edges. For shape 1 this is also the case for the

internal edges, which is noteworthy, because, as seen in Figure 22, there is no obvious
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reason why l7 should have the same distribution as l8 and l9. The edges l8 and l9 take

symmetrical positions within the reduced tree. We would therefore expect their lengths to

be exchangeable. However, l7 plays a somewhat special role. It is merely the connection

of two identical pieces.

For shape 2, the statistical test results are less clear for the internal edges, although we

would expect them to be exchangeable, because of the symmetrical structure of the tree.

Here, three identical pieces are set together at the middle vertex. For proportions of l8 and

l7, the p-value is 0.003 which would lead us to reject the null hypothesis. For the other

two combinations of internal edges, (l8, l9) and (l7, l9), the p-values are 0.489 and 0.220

respectively. In these cases we cannot reject the null hypothesis on a common confidence

level.

Summing up, we notice that the structural shape of the reduced tree tends to have no

influence on the distribution of the total length. Moreover, the shape has no obvious

impact on the proportions of the segmental lengths. For both shapes the proportions of

external and internal edges follow distinct distributions. Within these two groups of edges,

the distributions seem to be rather similar. The estimated coefficients of a Dirichlet-

regression for shape 1 are α1 = 1.647, α2 = 1.637, α3 = 1.658, α4 = 1.653, α5 = 1.656,

α6 = 1.657, α7 = 1.249, α8 = 1.244, α9 = 1.248, for l1, l2 · · · , l9 respectively. For

shape 2, the estimates are α1 = 1.614, α2 = 1.607, α3 = 1.608, α4 = 1.650, α5 = 1.678,

α6 = 1.593, α7 = 1.316, α8 = 1.264, α9 = 1.288. As in the previous cases, the

simulated data suggests that the lengths of external edges, as well as internal edges, are

exchangeable within each group. They are certainly not exchangeable between those two

groups.
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5 Conclusion

Notwithstanding all the similarities, we have seen that the distributional properties of

the minimum spanning tree, as n, the number of vertices, increases, are substantially

different from the well understood properties of the Brownian Continuum Random Tree

- the limiting object of the uniform random tree. We have simulated minimum spanning

trees on up to 4000 vertices and investigated the total length and proportions of segmental

lengths in reduced trees on up to 6 randomly chosen vertices.

The distribution of the rescaled total length (by n−1/3) appears to be unimodal with expo-

nential tails. Moreover, it seems to be log-concave and is close to a Gamma-distribution

for the reduced tree on 4 randomly chosen vertices (Γ(13.235, 2.467) in the parametrisa-

tion of section 3.3).

The proportions of total length of the 2k − 3 segments in a reduced tree on k randomly

chosen vertices provide more insights into the distributional properties of the minimum

spanning tree. For k = 3, the proportions of the 3 segments seem to follow the same dis-

tribution and are exchangeable, which is also the case for uniform random trees. However,

they are not uniformly distributed on the 2-dimensional simplex. Their joint distribution

is close to a Dirichlet(1.52, 1.52, 1.52)-distribution. For k ≥ 4, we have observed quite

different distributions for the proportions of internal and external segments - those edges

that do not connect leaf vertices and those that do. The proportions of internal segments

tend to be smaller and their distribution possesses a more prominent peak. For k = 4,

a Dirichlet-model led to shape parameter estimates (1.57, 1.56, 1.58, 1.57, 1.24). For

k = 5, we obtained the estimates (1.62, 1.62, 1.62, 1.61, 1.61, 1.26, 1.25) for a Dirichlet-

distribution of 7 proportions. In both cases the lower coefficients, (1.24) and (1.26, 1.25)

respectively, correspond to the internal edges in the reduced trees. The higher coefficients

correspond to external edges. Lengths of internal and external edges are certainly not

exchangeable. This property constitutes a distinctive difference to the uniform random

tree. Yet, lengths of edges within each of these two groups might, with some reservation,

be exchangeable, even in cases where the symmetrical form of the tree does not provide

intuition.
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We know that the reduced trees satisfy two properties in the limit. They are binary and

have the chosen vertices on the leaves. For k = 6, we have shown that there are two

genuinely distinct structural shapes for reduced trees that satisfy these conditions. We

have seen that one of these shapes appeared almost 5.5 times as often as the other (84.60%

vs. 15.40%), but the distributional properties of the total length as well as the proportions

did not vary significantly with respect to the shape of the reduced tree.

As k, the number of randomly chosen vertices, increases relative to n, the number of ver-

tices in the minimum spanning tree, the percentage of simulated reduced trees that did

not satisfy both of the two limiting conditions increases substantially. For k = 3, 4, 5

and 6 (n = 4000), the percentage increased from 3.35%, 9.14%, 14.84% to 21.61%. This

might be interpreted as a sign of getting further away from the actual limiting distribution.

Hence, it is possible that there is more noise in the density estimations for larger num-

bers of randomly chosen vertices. In order to provide stronger results larger minimum

spanning trees need to be simulated. Yet, hardware, time and programming constraints

set n = 4000 as the limit for this study.
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Appendix: Selected Parts of the R-Code

Here, selected parts of the R-Code that has been used to simulate the data and implement

the above data analysis are presented.

Simulation of Data

The following block of code shows the functions used for the simulation of uniform ran-

dom trees, weighted complete graphs and minimum spanning trees. For the latter we

made use of the function minimum.spanning.tree() provided in the igraph-package.

# required R-packages:

library(MCMCpack); library(snow); library(snowfall); library(igraph)

# a function to simulate a uniform random tree using the Aldous-Broder algorithm:

ABalg <- function(n){

state <- sample(1:n,2)

v <- c(state); v2 <- c(state)

x <- c(state[1]); y <- c(state[2])

while (length(v) <= n-1){

state <- sample(1:n,1)

v2 <- c(v2,state)

if (any(v==state)==FALSE){

v <- c(v,state); x <- c(x,v2[(length(v2)-1)]); y <- c(y,state)

}

}

E <- cbind(x,y); return(E)

}

# a function to simulate a weighted complete graph:

CGraph.three <- function(n){

edges <- graph.full(n); w <- runif(sum(1:n-1))

g <- list("edgelist"=edges,"weights"=w)

return(g)

}

# for minimum spanning trees we use the minimum.spanning.tree() function

# from the R-package igraph.
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The following block of code shows how data for the distances between 6 randomly chosen

vertices have been simulated for minimum spanning trees. The procedure for k < 6 as well

as the adaptation of it for uniform random trees are analogue and not shown here. They

can of course be provided on request.

# a function for simulating a minimum spanning tree on n vertices and the distances

# between 6 randomly chosen vertices:

mst.dist.6 <- function(n){

M <- CGraph.three(n)

v <- sample(c(1:n),6)

mst <- minimum.spanning.tree(M$edgelist,weights=M$weights)

d.1 <- get.shortest.paths(mst,v[1],to=v[2])

d.2 <- get.shortest.paths(mst,v[3],to=v[4])

count <- 1

if (length(intersect(d.1[[1]],d.2[[1]]))>=1){

d.1 <- get.shortest.paths(mst,v[1],to=v[3])

d.2 <- get.shortest.paths(mst,v[2],to=v[4])

count <- count +1

if (length(intersect(d.1[[1]],d.2[[1]]))>=1){

d.1 <- get.shortest.paths(mst,v[1],to=v[4])

d.2 <- get.shortest.paths(mst,v[2],to=v[3])

count <- count +1

if (length(intersect(d.1[[1]],d.2[[1]]))>=1){

count <- count+1

}

}

}

if (count==4){

heart <- intersect(d.1[[1]],d.2[[1]])

d.1 <- get.shortest.paths(mst,heart,to=v[1])[[1]]

d.2 <- get.shortest.paths(mst,heart,to=v[2])[[1]]

d.3 <- get.shortest.paths(mst,heart,to=v[3])[[1]]

d.4 <- get.shortest.paths(mst,heart,to=v[4])[[1]]

d.7 <- heart

}

if (count<=3){

p <- list()

for (i in 1:length(d.1[[1]])){

pp <- get.shortest.paths(mst,from=d.1[[1]][i],to=d.2[[1]])

p <- c(p,pp)

}

l <- sapply(p,length)

index <- which(l==min(l))

d.7 <- p[[index]]

in.1 <-d.7[1]

in.2 <-d.7[length(d.7)]
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if (count==3){

d.1 <- get.shortest.paths(mst,in.1,to=v[1])[[1]]

d.4 <- get.shortest.paths(mst,in.1,to=v[4])[[1]]

d.2 <- get.shortest.paths(mst,in.2,to=v[2])[[1]]

d.3 <- get.shortest.paths(mst,in.2,to=v[3])[[1]]

}

if (count==2){

d.1 <- get.shortest.paths(mst,in.1,to=v[1])[[1]]

d.3 <- get.shortest.paths(mst,in.1,to=v[3])[[1]]

d.2 <- get.shortest.paths(mst,in.2,to=v[2])[[1]]

d.4 <- get.shortest.paths(mst,in.2,to=v[4])[[1]]

}

if (count==1){

d.1 <- get.shortest.paths(mst,in.1,to=v[1])[[1]]

d.2 <- get.shortest.paths(mst,in.1,to=v[2])[[1]]

d.3 <- get.shortest.paths(mst,in.2,to=v[3])[[1]]

d.4 <- get.shortest.paths(mst,in.2,to=v[4])[[1]]

}

}

## at this stage we have the subtree for the first 4 chosen vertices

stree <- unique(c(d.1,d.2,d.3,d.4,d.7))

dis <- get.shortest.paths(mst,v[5],to=stree)

l <- sapply(dis,length)

index <- which(l==min(l))

d.5 <- dis[[index]]

if (d.5[length(d.5)] %in% d.1){

count2 <- 1; ddd <- d.1; j <- which(ddd==d.5[length(d.5)])

d.1 <- ddd[j:length(ddd)]; d.8 <- ddd[1:j]

}

if (d.5[length(d.5)] %in% d.2){

count2 <- 2; ddd <- d.2; j <- which(ddd==d.5[length(d.5)])

d.2 <- ddd[j:length(ddd)]; d.8 <- ddd[1:j]

}

if (d.5[length(d.5)] %in% d.3){

count2 <- 3; ddd <- d.3; j <- which(ddd==d.5[length(d.5)])

d.3 <- ddd[j:length(ddd)]; d.8 <- ddd[1:j]

}

if (d.5[length(d.5)] %in% d.4){

count2 <- 4; ddd <- d.4; j <- which(ddd==d.5[length(d.5)])

d.4 <- ddd[j:length(ddd)]; d.8 <- ddd[1:j]

}

if (d.5[length(d.5)] %in% d.7){

count2 <- 7; ddd <- d.7; j <- which(ddd==d.5[length(d.5)])

d.7 <- ddd[j:length(ddd)]; d.8 <- ddd[1:j]

}

d.5 <- rev(d.5)
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## at this stage we have the subtree for the first 5 chosen vertices

stree <- unique(c(d.1,d.2,d.3,d.4,d.5,d.7,d.8))

dis <- get.shortest.paths(mst,v[6],to=stree)

l <- sapply(dis,length)

index <- which(l==min(l))

d.6 <- dis[[index]]

if (d.6[length(d.6)] %in% d.1){

count3 <- 1; ddd <- d.1; j <- which(ddd==d.6[length(d.6)])

d.1 <- ddd[j:length(ddd)]; d.9 <- ddd[1:j]

}

if (d.6[length(d.6)] %in% d.2){

count3 <- 2; ddd <- d.2; j <- which(ddd==d.6[length(d.6)])

d.2 <- ddd[j:length(ddd)]; d.9 <- ddd[1:j]

}

if (d.6[length(d.6)] %in% d.3){

count3 <- 3; ddd <- d.3; j <- which(ddd==d.6[length(d.6)])

d.3 <- ddd[j:length(ddd)]; d.9 <- ddd[1:j]

}

if (d.6[length(d.6)] %in% d.4){

count3 <- 4; ddd <- d.4; j <- which(ddd==d.6[length(d.6)])

d.4 <- ddd[j:length(ddd)]; d.9 <- ddd[1:j]

}

if (d.6[length(d.6)] %in% d.5){

count3 <- 5; ddd <- d.5; j <- which(ddd==d.6[length(d.6)])

d.5 <- ddd[j:length(ddd)]; d.9 <- ddd[1:j]

}

if (d.6[length(d.6)] %in% d.7){

count3 <- 7; ddd <- d.7; j <- which(ddd==d.6[length(d.6)])

d.7 <- ddd[j:length(ddd)]; d.9 <- ddd[1:j]

}

if (d.6[length(d.6)] %in% d.8){

count3 <- 8; ddd <- d.8; j <- which(ddd==d.6[length(d.6)])

d.8 <- ddd[j:length(ddd)]; d.9 <- ddd[1:j]

}

d.6 <- rev(d.6)

## at this stage we have all lengths of the subtree on 6 vertices

## last step: find out which shape the tree has (there are two genuinely different shapes)

shape <- NA

starts <- c(d.1[1],d.2[1],d.3[1],d.4[1],d.5[1],d.6[1])

if (max(table(starts))==2 & any(vw %in% starts)==FALSE & count<=3){

if (length(unique(starts))==4){shape <- "shape1"}

if (length(unique(starts))==3){shape <- "shape2"} # shapes as in figure 22

}

L <- c(length(d.1)-1,length(d.2)-1,length(d.3)-1,

length(d.4)-1,length(d.5)-1,length(d.6)-1,
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length(d.7)-1,length(d.8)-1,length(d.9)-1,shape)

return(L)

} # END of function

# simulating 20,000 observations of minimum spanning trees on 4000 vertices

# for the distances between 6 randomly chosen vertices:

sim.mst.4000.20000.dist.6 <- sfLapply(rep(4000,20000), mst.dist.6)

sfStop()

sim.10 <- sapply(sim.mst.4000.20000.dist.6,round)

DATA <- data.frame(t(sim.10))

write.table(DATA, "C:/Users/Israel/Downloads/mst.4000.dis.6.txt", sep="\t")
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Analysis of Data

Kernel density estimations, Gamma-models, Dirichlet-regressions and log-concave density

estimations have been implemented using the following commands. The analysis is based

on the R-packages logcondens, developed by Kaspar Rufibach and Lutz Dümbgen, and

DirichletReg, developed by Marco J. Maier.

library(logcondens); library(DirichletReg)

# Kernel smoothing as used in this study:

KER <- density(X, bw="SJ")

# where X is a vector that contains simulated rescaled lengths

# and bw="SJ" specifies the bandwidth selection procedure

# as described in section 3.3 (recommended in Venables and Ripley 2002)

# Implementing a Dirichlet-regression in R for 3 proportions:

names(DATA) <- c("l1","l2","l3")

DATA.DR <- DR_data(DATA)

model <- DirichReg(DATA.DR~1)

# where DATA is a data frame that contains the 3 segmental lengths of the

# 3-reduced tree. For k>3, the case is analogue.

# Log-concave density estimation:

res <- logConDens(X,smoothed=TRUE,print=FALSE)

# X is a vector that contains simulated rescaled lengths

summary(res)

est <- evaluateLogConDens(seq(0,12,0.01),res)

# "est" is a data frame that contains evaluations of the estimated log-concave density

# as well as a smoothed version of it and the corresponding CDF estimates

# Fit a Gamma-model:

model <- glm(X ~ 1, family = Gamma)

# X is a vector that contains simulated rescaled lengths

gamma.shape(model) # to get an improved estimate of the shape parameter

# alternative:

fitdistr(X, "gamma")

# notice that the two alternatives use different parametrisations!
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The following block of code shows how Figure 22 on page 32 has been produced. The

complete code that has been written for graphical representations is not shown here, but

is available on request. It makes substantial use of the dafault plotting options in R as well

as the R-package ggplot2.

par(mfrow=c(1,2))

m <- t(matrix(c(2,1,2,2,1,2,3,1,3,2,4,1,1,1,1,0,4,2,4,0),ncol=10))

plot.igraph(graph.edgelist(t(matrix(c(1,2,1,7,7,3,7,8,1,4,4,5,4,6,6,9,6,10),ncol=9)),directed=FALSE),

vertex.label=c("","1","6","","2","","","5","3","4"),vertex.size=30,

vertex.label.color="black",

edge.label=c("l1","l9","l6","l5","l7","l2","l8","l3","l4"),

edge.label.color="black",

vertex.frame.color="black",

vertex.color=c("white","lightblue","lightblue","white",

"lightblue","white","white","lightblue",

"lightblue","lightblue"),

layout = m)

mtext("Shape 1",side=1, cex=0.8)

m <- t(matrix(c(2.5,1,2.5,2,1,2,2,3,3,3,4,1,1,1,1,0,4,2,4,0),ncol=10))

plot.igraph(graph.edgelist(t(matrix(c(1,2,1,7,7,3,7,8,1,6,2,5,4,2,6,9,6,10),ncol=9)),directed=FALSE),

vertex.label=c("","","6","1","2","","","5","3","4"),vertex.size=30,

vertex.label.color="black",

edge.label=c("l7","l9","l6","l5","l8","l2","l1","l3","l4"),

edge.label.color="black",

vertex.frame.color="black",

vertex.color=c("white","white","lightblue","lightblue",

"lightblue","white","white","lightblue","lightblue","lightblue"),

layout = m)

mtext("Shape 2",side=1, cex=0.8)

# the matrix m and the command "layout = m" specify the location

# of vertices on the plane.

# with mtext() we can add captions under the trees.
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